On the mechanisms of colloidal self-assembly during spin-coating.
نویسندگان
چکیده
Spin-coating offers a facile fabrication route for the production of high quality colloidal crystals, which have potential as photonic band-gap materials. This paper presents the results of direct observations of the self-assembly of latex colloids during spin-coating through the use of stroboscopic microscopy. We have been able to identify several mechanisms by which self-assembly occurs, depending upon the dispersion properties, such as particle weight fraction, solvent volatility and viscosity. Through the use of stroboscopic microscopy we have directly observed ordering occurring due to high concentrations of colloid particles (where volatility is relatively low), resulting in the formation of regular close packed ordered particle arrays. Conversely when the system in spun-cast from a much more volatile solvent, highly disordered non-equilibrium arrangements of particles form. When spin-coating a low concentration, low volatility dispersion, ordering is dominated by the occurrence of capillary drying fronts, which drag the particles into ordered arrangements. At a volatility intermediate to that of water and ethanol, ordering occurring predominantly via shear forces. Finally when the volatility is increased beyond the shear ordering regime, excessive shear leads to the occurrence of drying fronts within the system and so again, capillary forces induce a large degree of order within the final film.
منابع مشابه
An Approach to Lithographically Defined Self-Assembled Nanoparticle Films
Both 2D and 3D colloidal particle “crystals” and patterned nanoparticle arrays deposited from colloidal suspensions are the subject of intense study owing to their potential applications in electronics, photonics, biological and chemical sensors, and catalysis. Colloidal particle crystals and patterned colloidal particles are most often formed using processes such as gravity sedimentation, spin...
متن کاملTop-down approaches to the formation of silica nanoparticle patterns.
This article reports a simple, versatile approach to the fabrication of lithographically defined mesoscopic colloidal silica nanoparticle patterns over large areas using spin-coating, interferometric lithography, and reactive-ion etching. One-dimensional nanoparticle films (bands) and 2D discs, diamonds, and holes with sub-micrometer periodicity, high quality, and excellent uniformity were succ...
متن کاملFabrication of enclosed nanochannels using silica nanoparticles
We report a simple and inexpensive approach to the fabrication of enclosed nanoscale channels composed of silica nanoparticles on planar Si surfaces using interferometric lithography to define the long-range pattern in a photoresist film followed by spin-coating self-assembly of colloidal silica nanoparticles and high-temperature calcination to remove the photoresist leaving open nanochannels. ...
متن کاملColloids with high-definition surface structures.
Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a...
متن کاملDNA transport in hierarchically-structured colloidal-nanoparticle porous-wall nanochannels.
We report a simple approach to the formation of 3D colloidal nanoparticle structures incorporating enclosed mesoscopic structures through a simple process of spin-coating-driven directed self-assembly onto lithographically defined polymer templates. Removal of the buried polymer patterns by high temperature calcination results in the formation of hierarchically enclosed channels, continuous net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 44 شماره
صفحات -
تاریخ انتشار 2014